

Reference people

Chance to get involved in international collaborations for the follow-up of GRB and Gravitational wave sources

Gamma Ray Bursts

DIFA: Marcella Brusa, Cristian Vignali **OAS**: Andrea Rossi, Eliana Palazzi, Giulia Stratta, Elisabetta Maiorano, Daniela Vergani, Lorenzo Amati **INFN:** Simone Dall'Osso

STARGATE – GRAWITA – ENGRAVE

GRB: progenitors ?

- •Long GRB: generated by the core-collapse of massive stars
- •Short GRB: generated by compact binary coalescences (CBC) as NS-NS or NS-BH → gravitational wave sources!

GRB: progenitors ?

- •Long GRB: generated by the core-collapse of massive stars
- •Short GRB: generated by compact binary coalescences (CBC) as NS-NS or NS-BH \rightarrow gravitational wave sources!

However, a growing fraction of long GRBs is now found to be more galaxies) \rightarrow gravitational wave sources!

consistent with CBC (e.g. no presence of associated SN and/or old host

Study of GRB Supernovae

Rossi et al. 2021

andrea.rossi@inaf.it, eliana.palazzi@inaf.it

To robustly exclude the presence of a GRB-SN we need a better knowledge of SN lb,c parameter space (e.g. peak luminosity, peak time, etc)

Study of GRB Supernovae

Large Binocular Telescope

To robustly exclude the presence of a GRB-SN we need a better knowledge of SN lb,c parameter space (e.g. peak luminosity, peak time, etc)

CBC? 211023A **DURATION: >=0.5 year DATA:** LBT observations (already available)

andrea.rossi@inaf.it, eliana.palazzi@inaf.it

QUESTION: Which is the fraction of long GRB associated with

METHOD: 1) create a database of several SN lb,c lightcurves not necessarily associated with GRBs, building a simple code that converts observed to rest frame light-curves 2) Test case: modelling of the optical/NIR light curves of LBT observed long GRB/SN

Study of long GRB Host Galaxies

• Long GRB 050219A host is an early-type galaxy (Rossi et al., 2014)

andrea.rossi@inaf.it, eliana.palazzi@inaf.it, elisabetta.maiorano@inaf.it,daniela.vergani@inaf.it

. Long GRB associated with CBC are likely hosted in early-type galaxies that form very few stars, consistent with old star populations as NS or BH forming NS-NS or NS-BH systems

Study of long GRB Host Galaxies

• Long GRB 050219A host is an early-type galaxy (Rossi et al., 2014)

ESO Very Large Telescope

Large Binocular Telescope

CBC?

METHOD: study long GRB host galaxies, in particular 1) analysis of LBT and VLT optical/NIR images and spectra of 3 long GRB host galaxies, to measure i) redshift, ii) star formation rates, iii) metallicity 2): comparison with other GRB host galaxies **DURATION:** >=0.5 year **DATA:** LBT and VLT observations already available

andrea.rossi@inaf.it, eliana.palazzi@inaf.it, elisabetta.maiorano@inaf.it,daniela.vergani@inaf.it

. Long GRB associated with CBC are likely hosted in early-type galaxies that form very few stars, consistent with old star populations as NS or BH forming NS-NS or NS-BH systems

QUESTION: Which is the fraction of long GRB associated with

GRB: central engine ?

Long GRBs and Short **GRBs** show a "plateau" in the X-ray afterglow

The "plateau" origin is still a mystery and possibly connected with the nature of GRB central engine (NS or BH?)

JAJA DAS

 \rightarrow if NS, potential gravitational wave source!

Study of GRB "plateaus"

Two possible plateau origins: **1) spinning down NS** (remnant of the core-collapse or of the neutron star merger) **or 2) a geometrical effect from a structured jet**

Artistic view of a magnetar

Structured jet (Oganesian et al. 2020)

giulia.stratta@inaf.it, Simone.Dall-Osso@roma1.infn.it

Study of GRB "plateaus"

Artistic view of a magnetar

Two possible plateau origins: 1) spinning down NS (remnant of the core-collapse or of the neutron star merger) or 2) a geometrical effect from a structured jet

QUESTIONS: How many GRBs show an X-ray plateau? Which theoretical scenario is compatible with the observed fraction and which implications?

METHOD: analysis of Swift/XRT afterglow light curves of long and short GRBs

DURATION: 0.5-1 year

REQUISITES: Python, basics of X-ray data reduction, inferential statistics

DATA:Swift/XRTlightcurvespublicdatabasehttps://www.swift.ac.uk/xrt_curves/

Structured jet (Oganesian et al. 2020)

giulia.stratta@inaf.it, Simone.Dall-Osso@roma1.infn.it

Science with the THESEUS space mission

Transient High Energy Sky and Early Universe Suveryor THESEUS is a candidate space mission for the 7th medium size call (M7) by ESA

THESEUS will detect **high-redshift GRBs** for investigating the early universe and key phenomena for multi-messenger astrophysics

AIMS: study the scientific cases of THESEUS in synergy with the Cherenkov Telescope Array and the gravitational wave interferometer of 3rd generation Einstein Telescope

METHOD: simulations of GRBs and other interesting transients using codes and calibrations developped within the THESEUS consortium

DURATION: >=0.5 year

EXTRA: chance to get involved in the large THESEUS international collaboration

